You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

476 lines
16 KiB
Rust

use std::{
borrow::{self, Cow},
convert::Infallible,
fmt,
mem::{self, ManuallyDrop, MaybeUninit},
num::NonZeroU8,
ops,
ptr::{self, addr_of, addr_of_mut},
slice,
str,
};
pub type ShString23 = InliningString<23>;
/// An experimental alternative to `libshire::strings::ShString`, which is able to store one extra
/// byte of string data on the stack in the same amount of space.
// `repr(C)` is necessary to ensure that `Repr` starts at offset 0, so that it's properly aligned
// within the struct.
#[repr(C)]
pub struct InliningString<const N: usize> {
repr: Repr<N>,
// When `len` is less than or equal to `MAX_LEN`, `repr.stack` is active and the first `len`
// bytes of `repr.stack` contains initialised, valid UTF-8 data. When it is greater than
// `MAX_LEN`, `repr.heap` is active.
// len: u8,
len: NonZeroU8,
// A zero-sized field to ensure that `ShString` has an alignment equal to the alignment of
// `Box<str>`, to ensure that `repr.heap` is properly aligned when it is active.
_align: [Box<str>; 0],
}
// `repr(C)` is necessary to ensure that both of the fields start at offset 0. `repr(packed)`
// reduces the alignment to 1, which allows `InliningString` to be more compact.
#[repr(C, packed)]
union Repr<const N: usize> {
inline: [MaybeUninit<u8>; N],
boxed: ManuallyDrop<MaybeUninit<Box<str>>>,
}
impl<const N: usize> InliningString<N> {
const MAX_LEN: u8 = {
#[allow(clippy::cast_possible_truncation, clippy::checked_conversions)]
// `MAX_LEN` may be no larger than `u8::MAX - 2` to leave at least one bit pattern to
// represent the "boxed" case and at least one bit pattern for the niche optimisation.
if N <= (u8::MAX - 2) as usize {
N as u8
} else {
panic!("`N` must be no greater than `u8::MAX - 2`")
}
};
#[must_use]
pub fn new<S>(s: S) -> Self
where
S: AsRef<str>,
Box<str>: From<S>,
{
let src = s.as_ref().as_bytes();
match u8::try_from(src.len()) {
Ok(len) if len <= Self::MAX_LEN => {
unsafe {
let mut buf = MaybeUninit::<[MaybeUninit<u8>; N]>::uninit()
.assume_init();
let src_ptr = src.as_ptr() as *const MaybeUninit<u8>;
ptr::copy_nonoverlapping(src_ptr, buf.as_mut_ptr(), usize::from(len));
// SAFETY:
// The first `len` bytes of `buf` are copied from a `&str`, so the first `len`
// bytes are valid UTF-8. We have already checked that `len` is thess than or
// equal to `Self::MAX_LEN`.
Self::stack_from_raw_parts(buf, len)
}
},
_ => Self::new_heap(s),
}
}
/// # Safety
/// The first `len` bytes of `buf` must be valid UTF-8. `len` must be less than or equal to
/// `Self::MAX_LEN` (which is equal to `N`).
unsafe fn stack_from_raw_parts(buf: [MaybeUninit<u8>; N], len: u8) -> Self {
// SAFETY:
// The caller is responsible for ensuring that `len` is less than or equal to
// `Self::MAX_LEN`, which is no greater than `u8::MAX - 2`. If this contract is upheld,
// `len + 1` can never overflow, so `len + 1` can never be zero.
let len = NonZeroU8::new_unchecked(len + 1);
Self {
repr: Repr { inline: buf },
len,
_align: [],
}
}
fn new_heap<S>(s: S) -> Self
where
Box<str>: From<S>,
{
const U8_NONZERO_MAX: NonZeroU8 = unsafe { NonZeroU8::new_unchecked(u8::MAX) };
Self {
repr: Repr {
boxed: ManuallyDrop::new(MaybeUninit::new(Box::from(s))),
},
len: U8_NONZERO_MAX,
_align: [],
}
}
/// If the `inline` field is active, returns the length of the inline string data. If the
/// `boxed` field is active, returns `None`.
#[inline(always)]
fn inline_string_len(&self) -> Option<u8> {
let len = self.len.get() - 1;
if len <= Self::MAX_LEN {
Some(len)
} else {
None
}
}
#[inline]
#[must_use]
pub fn as_str(&self) -> &str {
match self.inline_string_len() {
Some(len) => {
// Get a pointer to the `inline` field of the union.
// SAFETY:
// Since `inline_string_len` returned `Some`, the `inline` field must be active.
let ptr = unsafe { addr_of!(self.repr.inline) }
as *const MaybeUninit<u8>
as *const u8;
// Construct a byte slice from the pointer to the string data and the length.
// SAFETY:
// The first `len` bytes of `inline` are always initialised, as this is an
// invariant of `InliningString`.
let bytes = unsafe { slice::from_raw_parts(ptr, usize::from(len)) };
// Perform an unchecked conversion from the byte slice to a string slice.
// SAFETY:
// The first `len` bytes of `inline` is always valid UTF-8, as this is an
// invariant of `InliningString`.
unsafe { str::from_utf8_unchecked(bytes) }
},
None => {
// SAFETY:
// `inline_string_len` returned `None`, which means that the `boxed` field is
// active. `boxed` is properly aligned because it is stored at offset 0 of
// `InliningString` (since both `InliningString` and `Repr` use `repr(C)`), and the
// alignment of `InliningString` is equal to the alignment of `Box<str>`.
let box_str = unsafe { &*addr_of!(self.repr.boxed) };
unsafe { box_str.assume_init_ref() }
},
}
}
#[inline]
#[must_use]
pub fn as_str_mut(&mut self) -> &mut str {
match self.inline_string_len() {
Some(len) => {
// Get a pointer to the `inline` field of the union.
// SAFETY:
// Since `inline_string_len` returned `Some`, the `inline` field must be active.
let ptr = unsafe { addr_of_mut!(self.repr.inline) }
as *mut MaybeUninit<u8>
as *mut u8;
// Construct a byte slice from the pointer to the string data and the length.
// SAFETY:
// The first `len` bytes of `stack` are always initialised, as this is an
// invariant of `ShString`.
let bytes = unsafe { slice::from_raw_parts_mut(ptr, usize::from(len)) };
// Perform an unchecked conversion from the byte slice to a string slice.
// SAFETY:
// The first `len` bytes of `inline` is always valid UTF-8, as this is an
// invariant of `InliningString`.
unsafe { str::from_utf8_unchecked_mut(bytes) }
},
None => {
// SAFETY:
// `inline_string_len` returned `None`, which means that the `boxed` field is
// active. `boxed` is properly aligned because it is stored at offset 0 of
// `InliningString` (since both `InliningString` and `Repr` use `repr(C)`), and the
// alignment of `InliningString` is equal to the alignment of `Box<str>`.
let box_str = unsafe { &mut *addr_of_mut!(self.repr.boxed) };
unsafe { box_str.assume_init_mut() }
},
}
}
#[inline]
#[must_use]
pub fn into_string(self) -> String {
match self.inline_string_len() {
Some(len) => {
// Get a pointer to the `stack` field of the union.
// SAFETY:
// Since `len` is less no greater than `MAX_LEN`, the `stack` field must be
// active.
let ptr = unsafe { addr_of!(self.repr.inline) }
as *const MaybeUninit<u8>
as *const u8;
// Construct a byte slice from the pointer to the string data and the length.
// SAFETY:
// The first `len` bytes of `stack` are always initialised, as this is an
// invariant of `ShString`.
let bytes = unsafe { slice::from_raw_parts(ptr, usize::from(len)) };
// Perform an unchecked conversion from the byte slice to a string slice.
// SAFETY:
// The first `len` bytes of `stack` is always valid UTF-8, as this is an
// invariant of `ShString`.
let str_slice = unsafe { str::from_utf8_unchecked(bytes) };
str_slice.to_owned()
},
None => {
// Disable the destructor for `self`; we are transferring ownership of the allocated
// memory to the caller, so we don't want to run the drop implementation which would
// free the memory.
let mut this = ManuallyDrop::new(self);
// SAFETY:
// `len` is greater than `Self::MAX_LEN`, which means that the `heap` field is
// active. `heap` is properly aligned because it is stored at offset 0 of
// `ShString` (since both `ShString` and `Repr` use `repr(C)`), and the alignment
// of `ShString` is equal to the alignment of `Box<str>`.
let field_ref = unsafe { &mut *addr_of_mut!(this.repr.boxed) };
let manual_box_str = mem::replace(field_ref, ManuallyDrop::new(MaybeUninit::uninit()));
let maybe_box_str = ManuallyDrop::into_inner(manual_box_str);
let box_str = unsafe { maybe_box_str.assume_init() };
box_str.into_string()
},
}
}
#[inline]
#[must_use]
pub fn heap_allocated(&self) -> bool {
self.inline_string_len().is_none()
}
#[inline]
#[must_use]
pub fn len(&self) -> usize {
self.as_str().len()
}
#[inline]
#[must_use]
pub fn is_empty(&self) -> bool {
self.as_str().is_empty()
}
}
impl<const N: usize> Drop for InliningString<N> {
fn drop(&mut self) {
if self.heap_allocated() {
let heap = unsafe { &mut *addr_of_mut!(self.repr.boxed) };
// SAFETY:
// Since this is a drop implementation, `heap` will not be used again after this.
let _ = unsafe { ManuallyDrop::take(heap).assume_init() };
}
}
}
impl<const N: usize> ops::Deref for InliningString<N> {
type Target = str;
#[inline]
fn deref(&self) -> &Self::Target {
self.as_str()
}
}
impl<const N: usize> ops::DerefMut for InliningString<N> {
#[inline]
fn deref_mut(&mut self) -> &mut Self::Target {
self.as_str_mut()
}
}
impl<const N: usize> AsRef<str> for InliningString<N> {
#[inline]
fn as_ref(&self) -> &str {
self
}
}
impl<const N: usize> AsMut<str> for InliningString<N> {
#[inline]
fn as_mut(&mut self) -> &mut str {
self
}
}
impl<const N: usize> borrow::Borrow<str> for InliningString<N> {
#[inline]
fn borrow(&self) -> &str {
self
}
}
impl<const N: usize> borrow::BorrowMut<str> for InliningString<N> {
#[inline]
fn borrow_mut(&mut self) -> &mut str {
self
}
}
impl<'a, const N: usize> From<&'a str> for InliningString<N> {
#[inline]
fn from(s: &'a str) -> Self {
Self::new(s)
}
}
impl<const N: usize> From<String> for InliningString<N> {
#[inline]
fn from(s: String) -> Self {
Self::new(s)
}
}
impl<'a, const N: usize> From<Cow<'a, str>> for InliningString<N> {
#[inline]
fn from(s: Cow<'a, str>) -> Self {
Self::new(s)
}
}
impl<const N: usize> str::FromStr for InliningString<N> {
type Err = Infallible;
#[inline]
fn from_str(s: &str) -> Result<Self, Self::Err> {
Ok(Self::new(s))
}
}
impl<const N: usize> fmt::Debug for InliningString<N> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Debug::fmt(&**self, f)
}
}
impl<const N: usize> fmt::Display for InliningString<N> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Display::fmt(&**self, f)
}
}
#[cfg(test)]
mod tests {
use std::borrow::Cow;
use super::*;
#[test]
fn test_align() {
use std::mem::align_of;
assert_eq!(align_of::<InliningString<23>>(), align_of::<Box<str>>());
}
#[test]
fn test_niche() {
use std::mem::size_of;
assert_eq!(size_of::<InliningString<23>>(), size_of::<Option<InliningString<23>>>());
}
#[test]
fn test_new() {
let test_strings = [
"",
"Hello",
"Somethingfortheweekend",
"Dichlorodifluoromethane",
"Electrocardiographically",
"こんにちは",
"❤️🧡💛💚💙💜",
];
for s in test_strings {
let buf = s.to_owned();
let borrowed = Cow::Borrowed(s);
let owned = Cow::<'static, str>::Owned(buf.clone());
assert_eq!(ShString23::new(s).as_str(), s);
assert_eq!(ShString23::new(buf).as_str(), s);
assert_eq!(ShString23::new(borrowed).as_str(), s);
assert_eq!(ShString23::new(owned).as_str(), s);
}
}
#[test]
fn test_as_str_mut() {
let mut s1 = ShString23::new("hello");
s1.as_str_mut().make_ascii_uppercase();
assert_eq!(s1.as_str(), "HELLO");
let mut s2 = ShString23::new("the quick brown fox jumps over the lazy dog");
s2.as_str_mut().make_ascii_uppercase();
assert_eq!(s2.as_str(), "THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG");
}
#[test]
fn test_into_string() {
let test_strings = [
"".to_owned(),
"Hello".to_owned(),
"Somethingfortheweekend".to_owned(),
"Dichlorodifluoromethane".to_owned(),
"Electrocardiographically".to_owned(),
"こんにちは".to_owned(),
"❤️🧡💛💚💙💜".to_owned(),
];
for s in test_strings {
assert_eq!(ShString23::new(&*s).into_string(), s);
}
}
#[test]
fn test_len() {
assert_eq!(ShString23::new("").len(), 0);
assert_eq!(ShString23::new("Hello").len(), 5);
assert_eq!(ShString23::new("Somethingfortheweekend").len(), 22);
assert_eq!(ShString23::new("Dichlorodifluoromethane").len(), 23);
assert_eq!(ShString23::new("Electrocardiographically").len(), 24);
assert_eq!(ShString23::new("こんにちは").len(), 15);
assert_eq!(ShString23::new("❤️🧡💛💚💙💜").len(), 26);
}
#[test]
fn test_heap_allocated() {
assert!(!ShString23::new("").heap_allocated());
assert!(!ShString23::new("Hello").heap_allocated());
assert!(!ShString23::new("Somethingfortheweekend").heap_allocated());
assert!(!ShString23::new("Dichlorodifluoromethane").heap_allocated());
assert!(!ShString23::new("こんにちは").heap_allocated());
assert!(ShString23::new("Electrocardiographically").heap_allocated());
assert!(ShString23::new("Squishedbuginsidethescreen").heap_allocated());
assert!(ShString23::new("❤️🧡💛💚💙💜").heap_allocated());
}
#[test]
fn test_zero_capacity() {
assert_eq!(InliningString::<0>::new("").as_str(), "");
assert!(!InliningString::<0>::new("").heap_allocated());
assert_eq!(InliningString::<0>::new("a").as_str(), "a");
assert!(InliningString::<0>::new("a").heap_allocated());
assert_eq!(InliningString::<0>::new("Hello").as_str(), "Hello");
assert!(InliningString::<0>::new("Hello").heap_allocated());
}
}