You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

450 lines
10 KiB
ArmAsm

%include "defines.s"
[bits 16]
extern boot1_bin_len
extern boot1_bin_sectors
extern boot1_magic
extern _start
section .prelude
%macro copy_stack_var_to_globals 2
mov %1, [bp - %2]
mov [GLOBALS + %2], %1
%endmacro
; boot0 loads only our first sector into memory. We must load the rest.
self_load:
; Now that we're not doing instruction byte golf like we were in boot0, we can afford to move
; the various boot0 stack variables to the globals section.
copy_stack_var_to_globals ax, BOOT_DRIVE
copy_stack_var_to_globals ax, SECTORS_PER_TRACK
copy_stack_var_to_globals ax, N_HEADS
copy_stack_var_to_globals ax, GPT_ENTRIES_START_LBA
copy_stack_var_to_globals ax, GPT_N_ENTRIES_16
copy_stack_var_to_globals ax, GPT_SECTOR_STRIDE
copy_stack_var_to_globals ax, GPT_BYTE_STRIDE
copy_stack_var_to_globals ax, GPT_ENTRIES_PER_SECTOR
copy_stack_var_to_globals ax, GPT_CURRENT_ENTRY_IDX
copy_stack_var_to_globals ax, GPT_SECTOR_ENTRY_IDX
copy_stack_var_to_globals ax, GPT_SECTORS_LOADED
copy_stack_var_to_globals ax, GPT_CURRENT_LBA
copy_stack_var_to_globals ax, BOOT1_GPT_ENTRY_ADDR
; Reset the stack, now we've got everything we need from it.
mov sp, bp
mov si, [GLOBALS + BOOT1_GPT_ENTRY_ADDR]
mov eax, [si + 0x20] ; Partition / boot1 start LBA lower
mov ebx, [si + 0x24] ; Partition / boot1 start LBA upper
mov ecx, [si + 0x28] ; Partition end LBA lower
mov edx, [si + 0x32] ; Partition LBA upper
; Panic if the partition / boot1 starting LBA overflows 16 bits.
or ebx, ebx
jnz panic_simple
ror eax, 16
or ax, ax
jnz panic_simple
ror eax, 16
; Calculate the boot1 end LBA and panic if it overflows 16 bits.
; n.b. ebx is zero before this so both bx and ebx can be used as the boot1 end LBA.
mov bx, ax
add bx, boot1_bin_sectors
jc panic_simple
; Panic if the boot1 end LBA is after the partition end LBA.
; If the upper 32 bits of the partition end LBA are nonzero, then it must be greater than our
; 16-bit boot1 end LBA.
or edx, edx
jnz .end_lba_ok
; Compare the boot1 end LBA to the lower 32 bits of the partition end LBA.
cmp ebx, ecx
ja panic_simple
.end_lba_ok:
; The first sector has already been loaded (we're running it right now!) so increment the
; current LBA.
inc ax
push ax ; Current LBA
push bx ; boot1 end LBA
mov ebx, BOOT1_LOADPOINT + 512 ; Current sector load address
.self_load_loop:
mov ax, [bp - 0x02] ; Load current LBA
cmp word [bp - 0x04], ax ; Compare to boot1 end LBA
jb .self_load_done
mov ecx, ebx
call read_sector
jc panic_simple
add ebx, 512
inc word [bp - 0x02]
jmp .self_load_loop
.self_load_done:
; Check the magic bytes at the end of boot1.
push es
mov ebx, boot1_magic
call addr32_to_addr16
cmp dword es:[bx], BOOT1_MAGIC
pop es
jne panic_simple
jmp prelude_main
; Converts a 32-bit address to a 16-bit sector and offset.
; Arguments:
; - ebx: 32-bit address
; Return:
; - es: 16-bit address segment (unchanged on failure)
; - ebx: 16-bit address offset
; - cf: unset on success, set on failure
; Clobber: none
addr32_to_addr16:
fnstart
push es
push eax
mov eax, ebx
; Divide addr by 16 and saturate to 16 bits to get the segment.
shr eax, 4
ror eax, 16
or ax, ax
jz .segment_ok
mov eax, 0xffff0000
.segment_ok:
ror eax, 16
mov es, ax
; Calculate offset = addr - (16 * segment), failing if the offset doesn't fit in 16 bits.
shl eax, 4
sub ebx, eax
ror ebx, 16
or bx, bx
jnz .fail
ror ebx, 16
pop eax
add sp, 2 ; Discard the original es from the stack
pop bp
clc
ret
.fail:
pop eax
pop es
stc
fnret
; Reads a single sector at the given LBA into memory.
; Arguments:
; - ax: start LBA
; - ecx: address to read sector to
; Return:
; - cf: unset on success, set on failure
; Clobber: eax, ecx, edx
read_sector:
; sector - 1 = LBA % sectors_per_track
; temp = LBA / sectors_per_track
; head = temp % n_heads
; cylinder = temp / n_heads
fnstart
push es
push ebx
mov ebx, ecx
call addr32_to_addr16
jc .return
; Calculate sector and temp
xor dx, dx
; Divide by sectors per track. dx = mod (sector - 1), ax = div (temp)
div word [GLOBALS + SECTORS_PER_TRACK]
; Put the sector into cx (the bios call will use cl)
mov cx, dx
inc cx
; Calculate head and cylinder
xor dx, dx
; Divide by number of heads. dx = mod (head), ax = div (cylinder)
div word [GLOBALS + N_HEADS]
mov dh, dl
mov ch, al
mov dl, byte [GLOBALS + BOOT_DRIVE]
mov ah, 0x02
mov al, 1
; Read sector
int 0x13
.return:
pop ebx
pop es
fnret
panic_simple:
mov ax, 0x0003
int 0x10
mov word fs:[0x0000], 0x4f21
.halt:
hlt
jmp .halt
%if ($ - $$) > 512
%error "boot1 self-loader exceeded sector size"
%endif
; Check whether the A20 line is enabled. Writes to the boot sector identifier.
; Arguments: none
; Return:
; - ax: 0 if A20 disabled, nonzero if A20 enabled
; Clobber: none
test_a20:
push bp
mov bp, sp
push gs
; Restore the boot sector identifier in case it was overwritten by anything.
mov word [0x7dfe], 0xaa55
mov ax, 0xffff
mov gs, ax
xor ax, ax
; If the word at 0x107dfe (1 MiB after the boot sector identifier) is different to the boot
; sector identifier, than A20 must be enabled.
cmp word gs:[0x7e0e], 0xaa55
setne al
jne .return
; Even if A20 was enabled, the two words may have been equal by chance, so we temporarily swap
; the boot sector identifier bytes and test again.
ror word [0x7dfe], 8
cmp word gs:[0x7e0e], 0x55aa
setne al
ror word [0x7dfe], 8
jmp .return
.return:
pop gs
pop bp
ret
; Wait for the Intel 8042 input buffer to become empty, so we can write.
; Arguments: none
; Return: none
; Clobber: al
intel_8042_wait_write:
.loop:
; Read the 8042 status register.
in al, INTEL_8042_IN_STATUS
; Input buffer status flag set means the input buffer is full, so loop in this case.
test al, INTEL_8042_STATUS_MASK_IBUF
jnz .loop
ret
; Wait for the Intel 8042 output buffer to become filled, so we can read.
; Arguments: none
; Return: none
; Clobber: al
intel_8042_wait_read:
.loop:
; Read the 8042 status register.
in al, INTEL_8042_IN_STATUS
; Output buffer status flag unset means output buffer is empty, so loop in this case.
test al, INTEL_8042_STATUS_MASK_OBUF
jz .loop
ret
; Try to enable A20 using the Intel 8042 PS/2 keyboard controller.
; Arguments: none
; Return: none
; Clobber: ax, cx, dx
enable_a20_intel_8042:
; Temporarily disable the keyboard.
call intel_8042_wait_write
mov al, INTEL_8042_CMD_PS2_1_DISABLE
out INTEL_8042_OUT_CMD, al
; Read the controller output port.
call intel_8042_wait_write
mov al, INTEL_8042_CMD_CONTROLLER_OUT_PORT_READ
out INTEL_8042_OUT_CMD, al
call intel_8042_wait_read
in al, INTEL_8042_IO_DATA
; The second bit is "A20 enabled", so set it.
mov cl, al
or cl, 2
; Write the modified byte back to the controller output port.
call intel_8042_wait_write
mov al, INTEL_8042_CMD_CONTROLLER_OUT_PORT_WRITE
out INTEL_8042_OUT_CMD, al
call intel_8042_wait_write
mov al, cl
out INTEL_8042_IO_DATA, al
; Re-enable the keyboard.
call intel_8042_wait_write
mov al, INTEL_8042_CMD_PS2_1_ENABLE
out INTEL_8042_OUT_CMD, al
; Wait for writes to finish.
call intel_8042_wait_write
ret
prelude_main:
call test_a20
test al, al
jnz .a20_enabled
; Try to enable A20 using the Intel 8042 PS/2 keyboard controller.
call enable_a20_intel_8042
call test_a20
test al, al
jnz .a20_enabled
; TODO: try other methods first before we panic:
; - [ ] BIOS interrupt
; - [ ] Fast A20 enable
jmp panic_simple
.a20_enabled:
mov ax, 0x0003
int 0x10
; Ensure interrupts are definitely disabled.
cli
; Load our flat-address-space GDT.
lgdt [flat_gdt_slice]
; Set the protected-mode bit in cr0.
mov eax, cr0
or al, 0x01
mov cr0, eax
; Long jump to set the code segment to flat_gdt.segment_code, and to clear the instruction
; pipeline.
jmp (flat_gdt.segment_code_32 - flat_gdt):.protected_mode
[bits 32]
.protected_mode:
; Set the data segments to flat_gdt.segment_data.
mov eax, (flat_gdt.segment_data - flat_gdt)
mov ds, eax
mov es, eax
mov fs, eax
mov gs, eax
mov ss, eax
; Reset the stack.
mov ebp, STACK_BASE
mov esp, ebp
jmp _start
jmp panic_simple
section .data
flat_gdt_slice:
dw FLAT_GDT_LEN
dd flat_gdt
; Segment descriptor layout
; | Range (bits) | Field |
; |--------------|---------------|
; | 0-16 | limit |
; | 16-32 | base |
; | 32-40 | base cont. |
; | 40-48 | access |
; | 48-52 | limit cont. |
; | 52-56 | flags |
; | 56-64 | base cont. |
;
; Flags
; - 0: reserved
; - 1: long-mode code segment
; - 2: size
; - unset: 16-bit
; - set: 32-bit
; - 3: granularity
; - unset: limit is measured in bytes
; - set: limit is measured in 4KiB pages
;
; Access
; - 0: accessed
; - unset: CPU will set it when the segment is accessed
; - 1: readable / writable
; - data segments: is segment writable (data segments are always readable)
; - code segments: is segment readable (code segments are never writable)
; - 2: direction / conforming
; - data segments: whether segment grows down
; - code segments: whether this can be executed from a lower-privilege ring
; - 3: executable
; - unset: this is a data segment
; - set: this is a code segment
; - 4: descriptor type
; - unset: this is a task state segment
; - set: this is a data or code segment
; - 5-6: privilege level (ring number)
; - 7: present (must be set)
;
align 8
flat_gdt:
; First GDT entry must be 0.
.segment_null:
dq 0
; 32-bit code segment.
; Bytes 0x0000 - 0xffff.
.segment_code_32:
db 0xff, 0xff, \
0x00, 0x00, \
0x00, \
10011011b, \
01000000b, \
0x00
; 16-bit code segment, to use if we want to switch back to real mode.
; Bytes 0x0000 - 0xffff.
.segment_code_16:
db 0xff, 0xff, \
0x00, 0x00, \
0x00, \
10011011b, \
00000000b, \
0x00
; Data segment.
; Pages 0x000000 - 0x0fffff, which covers the entire 32-bit address space (start of 0xfffff-th page
; is 0xfffff * 4096 = 0xfffff000, end of page exclusive is 0xfffff000 + 4096 = 0x100000000).
.segment_data:
db 0xff, 0xff, \
0x00, 0x00, \
0x00, \
10010011b, \
11001111b, \
0x00
FLAT_GDT_LEN equ ($ - flat_gdt)