You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

271 lines
8.0 KiB
ArmAsm

; MEMORY LAYOUT
; R = reserved, U = usable
; --------------------------------------------------------------------
; R | 0x000000 - 0x000400: real-mode interrupt vector table
; R | 0x000400 - 0x000500: bios data area
; U | 0x000500 - 0x004000: main stack
; U | 0x004000 - 0x006a00: globals
; U | 0x006a00 - 0x007c00: memory map
; U | 0x007c00 - 0x007e00: boot sector
; U | 0x007e00 - 0x080000: conventional usable memory
; R | 0x080000 - 0x0a0000: extended bios data area (maximum possible size)
; R | 0x0a0000 - 0x0c0000: video memory
; R | 0x0c0000 - 0x0c8000: video bios
; R | 0x0c8000 - 0x0f0000: bios expansions
; R | 0x0f0000 - 0x100000: motherboard bios
%include "defines.s"
; BIOS puts our boot sector at 0000:7c00
[org BOOT0_LOADPOINT]
; We're (probably) in real mode
[bits 16]
main:
; Disable interrupts
cli
xor ax, ax
mov ds, ax
mov es, ax
; Put the stack base at 0x4000.
; Stack grows high->low, so we'll grow away from our globals and program text.
mov ss, ax
mov bp, STACK_BASE
mov sp, bp
; Segment for VGA (0xb800 * 16 = 0xb8000)
mov ax, 0xb800
mov fs, ax
; Set VGA mode
; https://mendelson.org/wpdos/videomodes.txt
mov ax, 0x0003
int 0x10
; Store boot drive number
xor dh, dh
push dx
; Get drive geometry
mov di, 0x00
mov ah, 0x08
int 0x13
jc panic
; Load sectors per track into cx & spill
and cl, 0x3f
xor ch, ch
push cx
; Load number of heads into bx & spill
movzx bx, dh
inc bx
push bx
; Load LBA 1.
mov ax, 1
mov bx, 0x7e00
call read_lba
; Check the GPT header magic "EFI PART"
mov cx, GPT_MAGIC_LEN
mov si, gpt_magic
mov di, 0x7e00
repe cmpsb
jne panic
; Ensure the 8-byte GPT starting LBA fits in 16 bits
mov di, 0x7e00 ; The rep increments di so we need to reset it
mov eax, [di + 0x4c]
mov bx, [di + 0x4a]
or ax, bx
or eax, eax
jnz panic
; Store the first 16 bits of the GPT starting LBA (we have made sure the remaining bits are 0)
push word [di + 0x48]
; Load number of partitions
mov ax, [di + 0x50]
mov bx, [di + 0x52]
or bx, bx
jz .gpt_n_partitions_loaded
; Number of partitions overflows 16 bits, so we just concern ourselves with the first 65535.
; That's an awful lot of partitions anyway.
mov ax, 0xffff
.gpt_n_partitions_loaded:
push ax
; Load GPT entry size
mov eax, [di + 0x54] ; Operand size override otherwise this is going to be painful
mov ebx, eax
; Assert that the entry size is 128 * 2^n for some integer n>=0. This is required for a valid GPT
; and has the nice properties that:
; - If each entry is larger than a sector (512 bytes), they'll be sector-aligned.
; - If each entry is smaller than a sector, an integer number of them will fit into a sector.
or eax, eax ; Test size != 0 because 128 * 2^n != 0
jz panic
test eax, 127 ; Test size is a multiple of 128
jnz panic
; Use the (n & (n - 1)) == 0 trick to test if the entry size is a power of 2. Since we already
; know it's a nonzero multiple of 128, if size is a power of 2 then size = 128 * 2^n holds.
; Therefore we don't need to bother dividing by 128 first (shr 7), which saves a couple of bytes.
mov ecx, ebx
dec ecx
and ecx, eax
jnz panic
; Find the "sector stride", which is the number of sectors we increment by each time we want to
; load a new entry.
shr eax, 9 ; Divide by sector size to get sectors per entry
cmp eax, 0xffff ; Make sure sectors per entry fits in 16 bits
ja panic
or ax, ax
jnz .gpt_sector_stride_loaded
; Sector stride must be at least one or we'll load the same sector each time!
inc ax
.gpt_sector_stride_loaded:
push ax
; Find the "byte stride", which is the number of bytes we increment by each time we want to load
; the next entry in the same sector.
cmp ebx, 512
jb .gpt_find_entries_per_sector
push word 0 ; Arbitrary byte stride since there's only one entry per sector
push word 1 ; 1 entry per sector, since an entry is larger than a sector
jmp .gpt_found_entries_per_sector
.gpt_find_entries_per_sector:
push bx ; Store byte stride = entry length in this case
xor dx, dx
mov ax, 512
div bx ; Find entries per sector
push ax
.gpt_found_entries_per_sector:
; Set up stack variables for our second stage search loop.
xor ax, ax
push ax ; Current entry
push ax ; Current entry within the current sector
push ax ; Number of sectors loaded
push word [bp - GPT_ENTRIES_START_LBA] ; Current LBA
; Search for the partition storing our second stage.
.loop_find_stage2:
mov dx, [bp - GPT_CURRENT_ENTRY_IDX]
cmp [bp - GPT_N_ENTRIES_16], dx
; Panic if we've run out of partitions and haven't found the second stage yet.
jbe panic
; If we haven't loaded any sectors yet, load the first one.
cmp word [bp - GPT_SECTORS_LOADED], 0
je .load_first_lba
; If there's still more entries in the current sector, skip loading a new sector
mov ax, [bp - GPT_SECTOR_ENTRY_IDX] ; Load current entry index within the current sector
cmp [bp - GPT_ENTRIES_PER_SECTOR], ax ; Compare to entries per sector
ja .process_current_entry
mov ax, [bp - GPT_SECTOR_STRIDE] ; Load sector stride
add word [bp - GPT_CURRENT_LBA], ax ; Increment current LBA by sector stride
mov word [bp - GPT_SECTOR_ENTRY_IDX], 0 ; Reset the current entry index within the current sector
.load_first_lba:
; Read the current LBA to 0x8000 (just past the end of the GPT header)
mov ax, [bp - GPT_CURRENT_LBA]
mov bx, 0x8000
call read_lba
; Increment number of sectors loaded
inc word [bp - GPT_SECTORS_LOADED]
.process_current_entry:
; Calculate the address of the current GPT entry.
mov ax, [bp - GPT_SECTOR_ENTRY_IDX] ; Load current entry index within current sector
xor dx, dx
mul word [bp - GPT_BYTE_STRIDE] ; Get the byte offset in the current sector of the current entry
add ax, 0x8000 ; Convert offset to address (we loaded the sector at 0x8000)
; Compare entry GUID to our stage 2 partition GUID.
mov cx, GUID_LEN
mov si, guid_stage2
mov di, ax
repe cmpsb
je .found_stage2
; Next iteration
inc word [bp - GPT_CURRENT_ENTRY_IDX] ; Increment current entry index
inc word [bp - GPT_SECTOR_ENTRY_IDX] ; Increment current entry index within the current sector
jmp .loop_find_stage2
.found_stage2:
push ax ; Address of the GPT entry for stage 2
mov si, ax
; Load partition LBA start.
mov eax, [si + 0x20]
mov ebx, [si + 0x24]
; Ensure it fits in 16 bits.
or ebx, ebx
jnz panic
cmp ebx, 0xffff
ja panic
; Load partition LBA end.
mov ecx, [si + 0x28]
mov edx, [si + 0x2c]
; Assert that the end LBA is greater than or equal to the start LBA, so we have at least one
; sector to load (end LBA is inclusive).
or edx, edx
jnz .stage2_end_lba_ok
cmp eax, ecx
ja panic
.stage2_end_lba_ok:
mov bx, BOOT1_LOADPOINT
call read_lba
jmp bx
; Load a single boot disk sector. Panic on failure.
; Inputs:
; - ax: LBA to load
; - bx: address to read sector to
; Clobber: ax, cx, dx
read_lba:
; sector - 1 = LBA % sectors_per_track
; temp = LBA / sectors_per_track
; head = temp % n_heads
; cylinder = temp / n_heads
xor dx, dx
; Divide by sectors per track. dx = mod (sector - 1), ax = div (temp)
div word [bp - SECTORS_PER_TRACK]
; Put the sector into cx (the bios call will use cl)
mov cx, dx
inc cx
xor dx, dx
; Divide by number of heads. dx = mod (head), ax = div (cylinder)
div word [bp - N_HEADS]
mov dh, dl
mov ch, al
mov dl, byte [bp - BOOT_DRIVE]
mov ah, 0x02
mov al, 1
; Read sector
int 0x13
jc panic
ret
panic:
mov ax, 0x0003
int 0x10
mov word fs:[0x0000], 0x4f21
hlt
gpt_magic db "EFI PART"
GPT_MAGIC_LEN equ $ - gpt_magic
; Our stage2 guid: fdffea69-3651-442f-a11d-88a09bf372dd
guid_stage2 db 0x69, 0xea, 0xff, 0xfd, 0x51, 0x36, 0x2f, 0x44, \
0xa1, 0x1d, 0x88, 0xa0, 0x9b, 0xf3, 0x72, 0xdd
GUID_LEN equ $ - guid_stage2
; MBR bootstrap field is 440 bytes long
%if ($ - $$) > 440
%error "exceeded mbr bootstrap field size"
%endif